

温度制御 UV-Vis 分光分析による ウーゾ効果の相図

Agilent Cary 3500 UV-Vis およびマルチセルサンプリング モジュールのマルチゾーン機能を用いた同時昇温実験

著者

Marc-André Gagnon and Claire Cislak Agilent Technologies, Inc.

はじめに

相図は、結合相における基本的な概念です。温度や圧力、または温度や濃度など、2 つの可変要素の 関数として、物質の物理的状態の変化を示します。相図は曲線をプロットすることで作成し、平衡状態 で物質の異なる相が共存する条件を表します。相図の線は、固相と液相、または液相とガス相との間 の界面など、相の境界を示します。これらの境界から、相転移が発生する条件を知ることができます。 したがって、特定の相図で適切な可変要素を変更して、境界の一方の側から他方の側へ値を移動する ことで、相転移に必要な条件が示されます。包括的な相図を得るためには多数の実験を実施する必要 があるため、このプロセスは時間がかかる場合があります。 相図と関連性があると考えられている溶解性チャートは、1 つまたは複数 の物質が他の物質とどのように混合されるかの要点を表します。溶解性 チャートは、溶解性(濃度と温度に基づいた、溶媒による溶質形成溶液) および混和性(沈殿物なしで均質な溶液を形成する物質の混和)を報告 するものです。調査対象の化学物質間の好ましい相互作用と好ましくない 相互作用に基づくのが、溶解性チャートです。

溶解性チャートと相図から、化学物質が相互に、および環境との間で、 どのように物理的に作用するのかについて情報を得ることができます。 したがって、これらの研究は化学の原理を理解するために不可欠です。

UV-Vis 分光分析は混濁サンプルの特性解析に適していることが明らかと なっているため¹、ウーゾ効果の研究に使用しました。ウーゾ効果とは、 ギリシャのウーゾやフランスのパスティスといったアルコール飲料のテル ペンと水との間に生じるタイプの乳化のことです。例えば、有名なブランド のパスティスには、このリキュールのアニスの香りのもとになっている高疎 水性のテルペン、アネトールが含まれています(図 1)。未希釈の場合、 このリキュールのエタノール濃度は 45% (v/v)です。このエタノールアル コール濃度において、アネトール分子は水/アルコール混合液の中で完全 に可溶性です。

図1.アネトール(一部のパスティスリキュールに存在する 高疎水性テルペン)の化学構造

パスティスは一般的に水と氷とともに提供されます。この水と氷で希釈 することでアルコール濃度が低くなり、混合液の温度が下がります。結果 として、アネトール分子は水性フラクションへと凝結し、リキュールが透 明な茶色から濁った黄色になります(図 2)。この現象の形成メカニズム は完全には分かっていませんが、ほぼ瞬時の変化には、化学者でなくて も魅了されます。²

図2. ウーゾ効果を示す、一般的なパスティス飲料の調製。未希釈のパスティス(左)、 水(中央左)、角氷(中央右)を混ぜると、黄色っぽく濁った飲料になります(右)。

今回の研究では、パスティス混合物中に懸濁するアネトールによって生じた 光分散の程度を測定することにより、複数の水/エタノール混合物の相転 移を評価しました。すでに示されているように、Agilent Cary 3500 UV-Vis 分光光度計は、その独自の光学設計により、混濁サンプルの特性解 析のためのユニークな機能を備えています。¹

Cary 3500 UV-Vis 分光光度計

Cary 3500 UV-Vis 分光光度計は、キセノン (Xe) フラッシュランプの 光源と立体配置ダブルリトローモノクロメータを採用した、交換可能な モジュール型システムです。モノクロメータのスペクトルバンド幅 (SBW) は 0.1 ~ 4.0 nm の範囲で変更できます。光ファイバ技術を使用して、 すべてのキュベットに同時にソース信号を直接、送達します。

Agilent コンパクトサンプリングモジュールと一般的な Cary 3500 UV-Vis エンジンを使用した場合はキュベット位置が 2 つあります。また、 Agilent マルチセルサンプリングモジュールでは 8 つのキュベットを使用 できます。

コンパクトペルチェとマルチセルペルチェサンプリングモジュールはどちら も、-5~110 ℃ の間で設定温度を保持できる空冷式ペルチェ温度制御 システムを採用しています。このシステムは、0.1~40 ℃/min の速度 で昇温することも可能です。

マルチセルサンプリングモジュール固有のマルチゾーン機能により、別の ゾーンで4つの温度制御実験(4つのサンプルとリファレンスのペア)を 同時に実行することもできます。このマルチゾーン機能は、マルチポイント 相図の作成における生産性を大幅に向上させます。 この研究では、マルチセルペルチェサンプリングモジュールを組み合わせた Cary 3500 を使用し、同時に 4 種類のアルコール/水混合物の昇温を調 査しました。実験の各設定に対して、サンプリングモジュールで 8 キュベット (4 つのサンプルキュベットおよび 4 つのリファレンスセル)を使用し、 一定の攪拌下で、温度を 55~-2.5℃の間で繰り返しました。結果として、 Cary 3500 マルチセルペルチェ UV-Vis システムをどのように使用して、 時間効率に優れた方法で、ウーゾ効果の 8 ポイントの溶解度相図を作成 できるかが明らかになりました。

実験方法

サンプル調製

パスティスサンプルを希釈し (合計 8 つ)、星型撹拌子とふたを装着した 標準的なオープントップ 10 mm 石英製キュベットに直接、調製しまし た。各サンプルのアルコール濃度は、45.0 (未希釈)、44.0、42.5、40.0、 37.5、35.0、32.5、30.0 % (v/v) でした。一貫性のために、各キュベット を合計で 2.00 mL の溶液で充填しました。

脱イオン (DI) 水でそれぞれ希釈されたエタノールを含むリファレンスセ ルは、撹拌子とふたを取り付けた、光学的に適合した石英製キュベットで 調製しました。光学的に適合した石英製キュベットペアを使用したため、 測定を開始する前に、ゼロ補正とベースライン設定は必要ありませんで した。すべてのサンプルキュベットに、先端が完全に溶液に浸漬するよう 一定の高さに設定された、温度プローブを取り付けました (図 4)。

装置構成

マルチセルペルチェサンプリングモジュールと組み合わせた Cary 3500 UV-Vis 分光光度計の制御には、Agilent Cary UV ワークステーション ソフトウェアを使用しました。

マルチセルペルチェモジュールの各セルにはそれぞれの検出器を組み 合わせます。各キュベットには撹拌子と独立した温度プローブを装着でき ます。したがって、本研究では4つすべてのサンプルセルに温度プローブを 取り付けて、サンプルキュベットの実際の温度測定値に基づき、各ゾーン (サンプルおよびリファレンスで構成)の温度をモニタリング、測定、制御 しました。

主要な混合物/成分の波長スキャン

複数のアルコール濃度で温度制御実験を行う前に、表1に記載の設定 を使用して、未希釈のパスティスリキュール、エタノールによる45% (v/v) アルコール濃度の希釈済みパスティス溶液、30% (v/v) アルコール濃度の 希釈済みパスティス溶液のUV-Vis スペクトルを取得しました。脱イオン 水で調製した対応するエタノール溶液をリファレンスセルで使用しました。 表 1.25 ℃ で未希釈/希釈パスティスサンプルの UV-Vis スペクトルを取得するために使用した Agilent 3500 UV-Vis パラメータ

パラメータ	設定	
波長範囲	$200 \sim 1,100 { m nm}$	
データ間隔	1.00 nm	
平均化時間	0.02 秒	
スペクトルバンド幅	4.0 nm	
撹拌スピード	800 rpm	
温度	25.0 °C	

溶解温度の調査

各パスティス混合物の溶解温度を測定するために使用した昇温パラメー タを、表2にまとめています。すべての実験で25.0 ℃の開始点を選択 しました。一部の混合物は、室温ですでに不溶性であることが確認され ました。したがって、昇温プログラムのステージ1では、キュベットの温度 を55 ℃まで上げて、浮遊状態の残りの粒子が完全に溶解されるように しました。次にステージ2では、吸光モードで55~-5 ℃での実際の データを収集しました。すべての測定に対し、温度コントローラのフィード バックループのために、温度プローブを各ゾーンのサンプルセルに取り 付けて使用しました。これらのパラメータの選択に関する詳細は、次の セクションで検討します。

表 2. 温度プログラムの各ステージに対する Agilent 3500 UV-Vis パラメータ

	ステージ 1(加熱)	ステージ 2 (冷却)
波長	750.0 nm	750.0 nm
平均化時間	1.0 秒	1.0 秒
スペクトルバンド幅	4.0 nm	4.0 nm
撹拌スピード	400 rpm	400 rpm
開始温度	25.0 °C	55.0 °C
終了温度	55.0 °C	-5.0 °C
ホールド時間	10.0 min	0 min
データ間隔	1.0 °C	1.0 °C
スピード	5.0 °C /min	1.0 °C /min

Cary 3500 マルチセルペルチェサンプリングモジュールはパージラインを 備えており、露点よりも低い温度で実験を行う場合に、キュベットの外壁 の結露を防ぎます。ウーゾ溶解度相図に関する今回の研究では、水の 氷点である 0 $^{\circ}$ 未満で吸光度測定値を採取する必要があったため、窒素 (N₂)を 10 L/min の流量でパージガスとして使用しました。

結果と考察

波長範囲の確認

45% (v/v) アルコール濃度での未希釈パスティスの特徴的な茶色は、この 研究で使用された特定のリキュールの製法に関連する発色団によるもの です。したがって、相転移の測定のための最適な波長範囲を確立するため に、最初に少数のコントロールスキャンを実行しました。

未希釈のパスティス(図3の青の曲線)は、500 nm 未満から、マルチセ ルペルチェモジュールと組み合わせた Cary 3500 の最大測光範囲まで の波長で強く吸光しています(約4.5 吸光度単位)。

パスティスリキュールに関連する発色団を視覚化するために、希釈済み パスティス溶液を調製し、一方でアネトールの沈殿を防ぐために、エタ ノール濃度を一定に保ちました。図3の黄色の曲線は、244 nm および 297 nm における2つの異なるピークを示し、460 nm までテーリングし ており、これは分離されていないピークのエッジによるものと見られます。 このテーリングの特性は、未希釈のパスティスリキュールスペクトル(青 色の曲線)で600 nm に及ぶ可能性が高く、これらの測定から、600 nm を上回る測定につながる大きな発色団はないと結論付けられます。図3 の緑色の曲線は低いアルコール比率の混合物(30%)であり、室温で 濁ったパスティス溶液を表しています。

図3. 未希釈パスティス(青)、45% (v/v) エタノールで10倍希釈したパスティス (黄色)、30% (v/v) アルコール濃度の濁ったパスティス溶液(緑)のUV-Vis スペ クトル。緑色の曲線に対する光分散の影響は、灰色の破線で示されています。

200 nm ~ 600 nm 範囲の発色団の特性以外にも、図 3 の灰色の破線 で示されているように、600 nm を超えても影響が観察されています。 スペクトル範囲全体で信号をオフセットする、ゆっくりと減衰するこの信号 は、浮遊状態の未溶解の粒子による光分散に関連しています。

相転移温度の測定には、750.0 nm の波長を選択しました。750.0 nm の見かけの吸光度信号は光分散の作用のみによるもので、発色団による 影響を受けていません。

温度条件と冷却速度の最適化

この研究で、より低いアルコール濃度の混合物では、転移温度は室温に 近くなりました。低いアルコール濃度のサンプルに対する代表的な溶解度 曲線を図4に示します。25.0 ℃の開始温度で、750 nm における見かけ の吸光度は、浮遊状態の未溶解のアネトールで生じた光分散により、非 常に高くなっています。55.0 ℃ へのサンプルの初期加熱(表2のステー ジ1)により、沈殿したアネトールがパスティス溶液のエタノールフラク ション中に再び溶解するため、見かけの吸光度が約0に下がります。この ステージで加熱速度は重要ではありません。光分散の原因となる粒子を 溶解させることが目的だからです。サンプルは温度上限で10分間保持 し、遅い溶出プロセスが完了するようにします。

図4.30% (V/V) アルコール濃度のパスティスサンプルの相転移に関する、代表的な 曲線。ステージ1 (●) の間、継続的な攪拌の下でサンプルを 55 ℃ にまで加熱した ところ、右のキュベットに示されているように、透明な溶液が生成されました。ステー ジ2 (●) の間、サンプルを -5 ℃ までゆっくりと冷却したところ、中央のキュベット に示されているように、濁った溶液が生成されました。左のキュベットに示されている ように、水の氷点の近くで追加の相転移が発生しました。

冷却段階 (表 2 のステージ 2) の間に、各ゾーンの温度を 1.0 ℃ /min の速度でゆっくりと -5.0 ℃ まで低下させました。高速の冷却速度 (2 ℃ /min 以上) での予備試験では、溶液を効率的に攪拌しても、アネトール 相転移は平衡に達していないことが示されました。高速の冷却速度では、 相転移の反応速度が遅すぎるため、ヒステリシス冷却/加熱曲線となります (結果は表示されていません)。

再現性の高い結果は、1.0 ℃ /min 以下の冷却速度で取得されました。 温度条件が満たされている場合、見かけの吸光度はプラトーに達する前に 急激に上昇します。この転換点は開始温度として見なされます。より多く のアネトールが沈殿するほど光分散の量が増加します。わずかにでも希 釈したパスティスサンプルの水性フラクションには、ある程度のアネトー ル沈殿物があります。

一部の溶液では、-3℃未満で見かけの吸光度が急落しました。この低下を図4に示します。キュベットを目視で観察して確認したところ、溶液を継続的に十分攪拌したにも関わらず、いくつかの溶液は-3℃未満で不安定化し、相分離し始めました。この現象は以前に観察されており、融合(アネトール液滴がより大きな液滴と結合)、凝集(結合することなくアネトール液滴が集合)、堆積(密度の差による分離)、オストヴァルト熟成(アネトール液滴サイズの増大)によって説明されています。²これらの各プロセスでは、沈殿したアネトールの均質的な集団が崩壊するため、吸光度が大幅に低下します。溶液を再加熱するとヒステリシスが確認でき、この低温での相転移は不可逆的であることが明らかとなりました。これらの観察に続き、-2.5℃未満の温度は、初期沈殿の開始に影響を及ぼさなかったため、溶解度相図では省略しました。

沈殿温度に対するアルコール % レベルの影響

複数のアルコール % レベル (未希釈~ 30.0 % v/v) で、新しく調製され た溶液を使用して実験を繰り返しました。各サンプルの冷却曲線を図 5 に示します。実験の結果は、リキュールに添加した水の量がごく少量の場 合でも、アネトールが沈殿し始める温度が変化することを示しています。 明白な傾向として、溶液中のエタノールの比率が低下するにつれ、沈殿 温度が高くなります。

図 5.45.0、44.0、42.5、40.0、37.5、35.0、32.5、30.0 (v/v) アルコール濃度に おけるパスティス溶液の UV-Vis 冷却曲線 (ステージ 2)

実験は 30 % (v/v) 濃度のアルコールに制限しました。アルコール濃度 の低いサンプルでは、最初に混合物を可溶化するために、エタノール/水 の沸点近くにまで温度を下げる必要があるためです。

相温度の測定

図5に示された各曲線に対し、相温度を正確に測定するために、一次微 分メソッドを適用しました。平均温度を使用して、図6に示されたアネトー ル溶解度相図を作成しました。エラーバーは、3回繰り返し分析の値から 得た標準偏差に相当します。

図 6. パスティスリキュール中のアネトールの溶解度相図。各データポイントは平均 温度の値に相当し、エラーバーは3回の繰り返し分析の標準偏差に関連しています。

UV-Vis 分光分析は、水の氷点に近い温度で発生する相分離を調査する ためにまっ先に思いつく、または最適なツールとは言えないかもしれま せん。しかし、相分離が生じる温度は、一次微分メソッドを使用して予測 することもできました。この追加の相転移は、図6のオレンジ色の破線で 示されているように、溶液のアルコール濃度とは関係ないと考えられます。 転移は0℃の非常に近くで起こるため、エマルジョン内の純水領域に関 連していると推測されます。

結論

Agilent マルチセルペルチェサンプリングモジュールを装着した Agilent Cary 3500 UV-Vis 分光光度計を使用して、パスティスリキュールに含ま れるアネトールの 8 ポイント相図を作成しました。

ペルチェ温度制御マルチセルのマルチゾーン機能は、サンプル/リファレン スペアを含むキュベットで構成された、4 つの昇温実験を同時に実施する のに役立ちました。この機能により、Cary 3500 UV-Vis を使用して 73 分 の分析を 2 回行い、パスティスについて包括的な溶解度相図を作成する ことができました。これは、他の手法を使用した相図の構築に要するより もはるかに短い時間です。

測定中の堆積を防ぐために、マルチセルの8つの各キュベットには、個別 の撹拌子を装着しました。また、持続的な攪拌により、すべてのキュベット で均一な温度が確保されました。これは昇温実験にとって非常に重要 です。空冷式ペルチェシステムと窒素ガスパージ機能を組み合わせること で、温度の設定ポイントに、室温よりも大幅に高い温度と、水の氷点より も低い温度を、結露なく達成できました。

本研究では、複雑なサンプルの相図を確立し、ウーゾ効果に関する知見を 得るための、使いやすい Cary 3500 UV-Vis システムの適合性と効率が 実証されました。

参考文献

- United States Pharmacopeia (2024). General Chapter, {855} Nephelometry and Turbidimetry. USP-NF. Rockville, MD: United States Pharmacopeia. DOI: https://doi.org/10.31003/ USPNF_M9373_03_01
- Sitnikova, N. L.; Sprik, R.; Wegdam, G.; Eiser, E. Spontaneously Formed trans-Anethol/Water/Alcohol Emulsions: Mechanism of Formation and Stability. Langmuir **2005**, 21, 16, 7083– 7089.

詳細情報

- Cary 3500 マルチセル UV-Vis 分光光度計
- Cary 3500 コンパクト UV-Vis 分光光度計
- Cary UV ワークステーションソフトウェア
- UV-Vis 分光分析と分光光度計の基礎サイト

ホームページ

www.agilent.com/chem/jp

カストマコンタクトセンタ

0120-477-111 email_japan@agilent.com

本製品は一般的な実験用途での使用を想定しており、 医薬品医療機器等法に基づく登録を行っておりません。 本文書に記載の情報、説明、製品仕様等は予告なしに 変更されることがあります。

DE-000868

アジレント・テクノロジー株式会社 © Agilent Technologies, Inc. 2024 Printed in Japan, September 12, 2024 5994-7767JAJP

