

TapeStation による rAAV DNA の解析

著者

苑 宇哲 遊佐 敬介 内田 和久 神戸大学大学院 科学技術イノベーション研究科 科学技術イノベーション専攻

津本 裕子 アジレント・テクノロジー株式会社 診断・ゲノミクス部門

概要

組換えアデノ随伴ウイルス(recombinant adeno-associated virus、rAAV)はウイルスベクターとして、高効率に遺伝子導入を実施する非常に有用なツールとして近年注目されています。rAAV のゲノム DNA は一本鎖 DNA(single-stranded DNA、ssDNA)で、サイズ確認には一般的に変性ゲルによる電気泳動やキャピラリー電気泳動で実施されますが、精度や時間がかかるといった問題点がありました。

本アプリケーションノートでは、Agilent TapeStation system を用いて rAAV DNA を解析した例を紹介しています 1 。 High Sensitivity RNA Assay を利用し、変性条件を改変することで迅速で簡便に rAAV DNA のサイズ確認および定量が可能なことを示しています。

方法

rAAV DNA サンプル

rAAV-ZsGreen1 DNA は pAAV-ZsGreen1 (Takara Bio 6231) を Pvull (New England Biolabs R0151) と Dral (New England Biolabs R0129) で制限酵素処理し、フェノール / クロロホルムと エタノール沈殿で精製しました。精製された AAV8-AAT-FIXp とト ランスフェクション後 1、2、3 日の VPC2.0 細胞からの rAAV2-CMV-ZsGreen1 の粗抽出物、および 1908_rAAV1-CMV-ZsGreen1、 1909_rAAV2-CMV-ZsGreen1、1911_rAAV6-CMV-ZsGreen1 は次世代バイオ医薬品製造技術研究組合から提供されました。 pAAV-ZsGreen1、pHelper および rep-cap plasmid (pRC1、pRC2mi342、pRC6、Takara Bio) を 293T 細胞 (American Type Culture Collection、Manassas、VA、USA、CRL-3216) PElpro (Polyplus Transfection 101000017) を使用しPElpro: DNA=1:1 の割合でトランスフェクションしました。トランスフェクション後72時 間で細胞を Triton X-100 buffer (0.5% Triton X-100、2 mM MgCl。 in phosphate-buffered saline (PBS)) で溶解し、タンジェンシャ ルフローろ過 (Spectrum) により容量を 1/8 にし、HiTrap AVB Sepharose Column (GE Healthcare) で処理をしました。洗浄後、 rAAV は 50 mM glycine-HCl (pH 2.7) に溶出し、CsCl 密度勾 配超遠心法 (148,500 g、46 h、21 °C) で精製しました。rAAV 粒子は PBS で透析し、使用まで-80 ℃で保存しました。

電気泳動

DNA の電気泳動には Agilent 4150 TapeStation system (型番 G2992AA) と High Sensitivity RNA Assay (型番 5067-5579、5067-5580) を利用しました。サンプルの変性条件以外はアジレントのプロトコル ² に従いました。1 kb DNA Ladder (New England Biolabs N3232)、High Sensitivity RNA Ladder (型番 5067-5581) および 50 bp DNA Ladder (New England Biolabs N3236) を分子量マーカーとして使用し、High Sensitivity RNA Ladder の変性はアジレントのプロトコルに従いました。

TapeStation、qPCR、ddPCR による定量

TapeStation での定量は TapeStation Analysis software で自動計算された濃度を用い、Sample buffer の変更量に応じて適宜再計算しました。qPCR および ddPCR で使用したプライマーはカスタムで合成しました(Eurofins Genomics)。配列は以下の通りです。

Forward primer; 5'-TTCGTGATCACCGGCGAGGGCAT-3'\
reverse primer; 5'-CCGTACATGAAGGCGGCGGACAA-3'\

probe; [FAM]AACCTGTGCGTGGTGGAGGGCGGC[BHQ1]

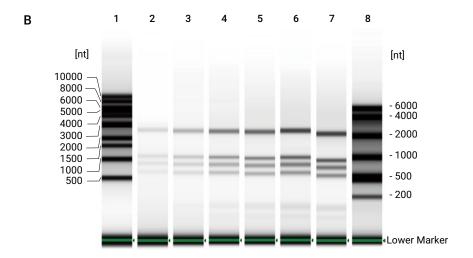
qPCR は QuantiTect Probe PCR Kit (Qiagen 204343) および StepOnePlus system (Thermo Fisher Scientific) を使用し、Pvull で制限酵素処理した pAAV-ZsGreen1を2倍の希釈系列でスタンダードカーブに使用しました。ddPCRではddPCR Supermix for Probes (Bio-Rad 186-3026)、QX200 Droplet Generator (Bio-Rad) および C1000 Touch Thermal Cycler (Bio-Rad) で実施しました。

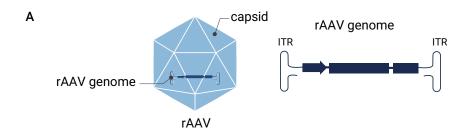
結果

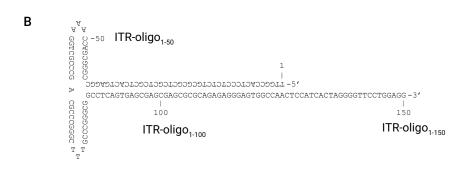
ssDNA のサンプル調製条件と プラスミド由来 rAAV DNA の解析

はじめに、1 kb DNA Ladder を用いて ssDNA を解析する条件を検討しました。 ssDNA の解析には TapeStation の High Sensitivity RNA assay を利用しました。 アジレントのプロトコルでは、サンプルの 1/2 量の High Sensitivity RNA Sample Buffer をサンプルに加え、72°C、3分で RNA を変性します (Fig. 1A 上図)。この 変性条件はキット付属の High Sensitivity RNA Ladder を変性するのには十分でし たが、二本鎖 DNA (double-strand DNA、 dsDNA) である1 kb DNA Ladderでは 十分な分離が得られませんでした。そこ で、Sample Buffer の量をサンプルと同 量にし、変性条件を75℃、5分に変更 したところ、十分な分離がみられ High Sensitivity RNA Ladder とのサイズと一 致しました (データ示さず)。よって、以 降の TapeStation の解析では Fig. 1A 下 図の条件でサンプルを調製しました。 rAAV DNA での変性条件を検証するた め、pAAV-ZsGreen1 を Pvull と Dral で制限酵素処理し、希釈系列を作製し TapeStation で解析しました。制限酵 素処理後の DNA は、2,577 bp の rAAV-ZsGreen1 & 1,194, 935, 692, 192, 107、19 bp の pUC ベクター部分の消化 断片を含みます。TapeStation の解析で、 rAAV-ZsGreen1 の約 2.6 kb の長さに相当 するバンドが観察され、rAAV DNA におい ても改変した熱変性条件で TapeStation で解析が可能なことが示されました (Fig. 1B)。また、TapeStationで定量した濃 度は、Qubit での定量と相関しており、 ssDNA の定量にも TapeStation が利用で きることが示唆されました (データ示さず)。

Agilent Protocol (Sample preparation for High Sensitivity RNA Assay) Vortex 1 min Sample/HS RNA Ladder $2\mu L$ HS RNA Sample Buffer $1\mu L$ Wortex 1 min Sample $2\mu L$ Figure 1 min Sample $2\mu L$ Heat $72\,^{\circ}$ C, $3\,^{\circ}$ C, $3\,^{\circ}$ C min Cool $2\,^{\circ}$ C min on ice Heat $75\,^{\circ}$ C, $5\,^{\circ}$ C min Cool $2\,^{\circ}$ C min on ice



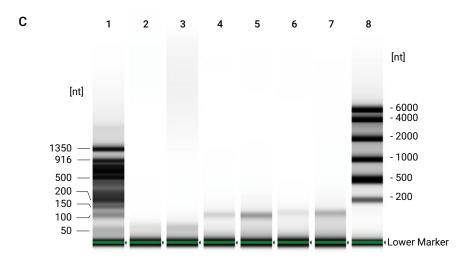

Fig. 1 サンプル調製方法と rAAV-ZsGreen1 の解析

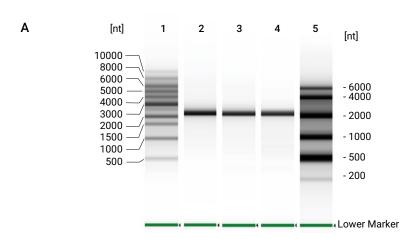

- (A) TapeStation High Sensitivity RNA assay でのサンプル調製方法。上図:アジレントプロトコル、下図:ssDNA 用に改変したプロトコル
- (B) rAAV-ZsGreen1 の TapeStation 分析結果。レーン1:1 kb DNA Ladder (10 ng/μL)、レーン2~7: rAAV-ZsGreen1、濃度は順に 0.11、0.23、0.45、0.68、0.90、1.10 ng/μL、レーン 8: High Sensitivity RNA Ladder

緑のバンドは内部標準の Lower Marker (25 nt) を示す。

ITR (inverted terminal repeat) の解析

AAV DNA は、両端に GC-rich かつパリン ドローム配列でT型の二次構造をもつ ITR 配列をもっています (Fig. 2A)。この 複雑な構造の ITR も同様の熱変性で解析 可能か検証するため、3種の合成オリゴ、 ITR-oligo₁₋₅₀, ITR-oligo₁₋₁₀₀, ITRoligo₁₋₁₅₀ (Fig. 2 B) を同量のSample Buffer と混合後、熱変性 (75 ℃、5分) 処理、もしくは未処理で TapeStation の High Sensitivity RNA assay で解析しま した。熱変性未処理の場合、50、100、 150 nt のシグナルは低く、熱変性を実施 することでより明確なバンドが観察されま した(Fig. 2C)。これは、ITR-oligoでは 熱変性をしない場合でも部分的に直鎖化 され、熱変性で完全に直鎖になることを 示唆しています。熱変性した 50 bp DNA Ladder と比較してサイズに相当した移動 度であることから、この条件で ITR 構造も 効果的に変性できることが示されました。




Fig. 2 rAAV の構成と合成 ITR の解析

- (A) rAAV の構成
- (B) 合成 ITR-oligo₁₋₅₀、ITR-oligo₁₋₁₀₀、ITR-oligo₁₋₁₅₀ の配列
- (C) ITR の TapeStation 分析結果。レーン1:50 bp DNA Ladder (10ng/μL)、レーン2:ITR-oligo₁₋₅₀ 熱変性なし、レーン3:ITR-oligo₁₋₅₀ 熱変性あり、レーン4:ITR-oligo₁₋₁₀₀ 熱変性なし、レーン5:ITR-oligo₁₋₁₀₀ 熱変性あり、レーン6:ITR-oligo₁₋₁₅₀ 熱変性なし、レーン7:ITR-oligo₁₋₁₅₀ 熱変性あり、レーン8:High Sensitivity RNA Ladder。ITR の濃度はすべて10 ng/μL。

緑のバンドは内部標準の Lower Marker (25 nt) を示す。

フェノール / クロロホルム抽出および 細胞に導入した rAAV DNA の解析

rAAV DNA の解析のため、3 つのサンプ ル 1908_rAAV1-CMV-ZsGreen1、 1909_rAAV2-CMV-ZsGreen1、1911_ rAAV6-CMV-ZsGreen1 からフェノール / クロロホルム法で rAAV DNA を抽出しま した。前述の条件で熱変性した DNA を TapeStation で解析したところ、rAAV DNA の推定サイズである 2.6 kb のバンド が観察され、また、他のサイズのバンド は見られなかった (Fig. 3) ことから、分 解されていない rAAV DNA が抽出された ことが示されました。各サンプル、1908_ rAAV1-CMV-ZsGreen1、1909_rAAV2-CMV-ZsGreen1、1911_rAAV6-CMV-ZsGreen1 の TapeStation で計算された濃 度は、それぞれ 3.15 ng/µL、3.19 ng/µL、 3.19 ng/µLで、gPCRで定量した濃度と ほぼ一致しました (Fig. 3B)。 ただし、 TapeStation での定量は qPCR に比べ 定量推奨濃度範囲が狭いため、サンプル 濃度によっては適用できない可能性があ ります。

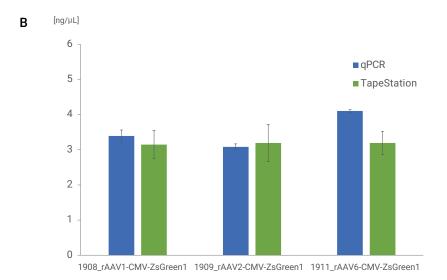
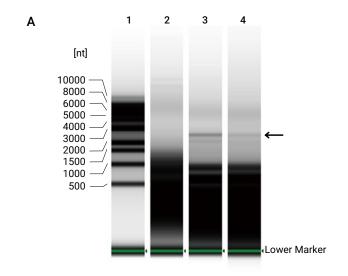



Fig. 3 フェノール / クロロホルム法により抽出した rAAV DNA の解析

- (A) 抽出した rAAV DNA の TapeStation での分析結果。レーン1:1 kb DNA Ladder (10 ng/μL)、レーン 2:1908_rAAV1-CMV-ZsGreen1、レーン 3:1909_rAAV2-CMV-ZsGreen1、レーン 4:1911_rAAV6-CMV-ZsGreen1、レーン 5:High Sensitivity RNA Ladder 緑のバンドは内部標準の Lower Marker (25 nt) を示す。
- (B) qPCR および TapeStation での 1908_rAAV1-CMV-ZsGreen1、1909_rAAV2-CMV-ZsGreen1、1911_rAAV6-CMV-ZsGreen1 の濃度比較

さらに、細胞に導入した rAAV DNA の解析のため、トランスフェクション後 1、2、3 日の VPC2.0 細胞からの rAAV-CMV-ZsGreen1 粗抽出物を DNasel で処理し、TapeStation で分析しました。2.6 kb の rAAV-CMV-ZsGreen1 DNA は、導入 1 日目には観察されませんでしたが、2 日と3 日後では粗抽出物の中で2.6 kb のバンドが検出できました(Fig. 4A)。これらの結果により、TapeStation による解析は、DNA の不純物が含まれている状態であっても rAAV DNA の測定に利用できることがわかりました。

さらに、GOI (Gene of interest) として、血液凝固第 IX 因子 (Factor IX-associated hemophilia、FIX) 遺伝子を使用し、rAAV DNA の検証を行いました。血友病 B またはクリスマス病として知られる第 IX 因子関連血友病は、FIX 遺伝子の欠失や機能低下によるもので、血友病 B 患者において、AAV ベクターにより IX 因子を導入することで、IX 因子の血中濃度が維持されたと報告されています 3,4。AAV8 カプシドに封入したrAAV8-AAT-FIXPをフェノール/クロロホルムで抽出し、TapeStationで分析したところ、該当 DNA の 3.2 kbのバンドが観察されました (Fig. 4B)。

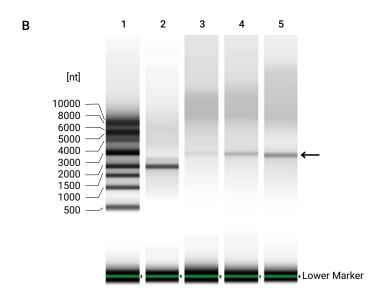
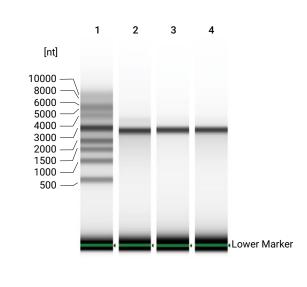
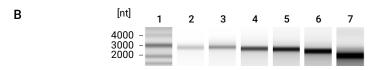


Fig. 4 細胞に導入した rAAV DNA および rAAV-AAT-FIX の解析


- (A) 細胞に導入した rAAV2-CMV-ZsGreen1 の TapeStation での分析結果。矢印は 2.6 kb rAAV2-CMV-ZsGreen1 を示す。レーン1:1 kb DNA Ladder (10 ng/uL) 、レーン2:day1 (0.5 × 10^7 vg/uL)、レーン3:day2 (1 × 10^8 vg/uL)、レーン4:day3 (0.5 × 10^8 vg/uL)
- (B) rAAV8-AAT-FIXp の TapeStation での分析結果。矢印は 3.2 kb AAV8-AATFIXp DNA を示す。レーン 1:1 kb DNA Ladder (10 ng/uL)、レーン 2:3 ng/uL 1908_rAAV1-CMV-Zs-Green1、レーン 3 ~ 5:0.17、0.67、1.7 ng/uL AAV8-AAT-FIXp


緑のバンドは内部標準の Lower Marker (25 nt) を示す。

熱処理により抽出された rAAV DNA の 解析

Α

これまでに rAAV DNA は熱処理により力 プシドから抽出できることが報告されてお り⁵、より簡便に rAAV DNA の解析を行う ため、熱処理で抽出した rAAV DNA の検 証を TapeStation で行いました。1908_ rAAV1-CMV-ZsGreen1ベクター粒子を 95°C、10分で熱処理し、AMPure XPビー ズでの精製/未精製、さらに比較のために フェノール / クロロホルム抽出後、精製し たものを TapeStation で解析しました (Fig. 5A)。これら3種類の抽出方法すべ てで 2.6 kb にバンドが観察され、熱処理 のみというシンプルな抽出方法でもフェ ノール / クロロホルム抽出と同様に検出で きることが示されました。さらに、熱処理 のみで抽出した rAAV DNA の希釈系列を 作製し、TapeStation と ddPCR で定量を しました (Fig. 5B、C)。 TapeStation で 計算された濃度は ddPCR の濃度よりわず かに高い値となりましたが、 $1 \sim 20 \text{ ng/}$ μL の範囲で直線性をもって定量できまし た。

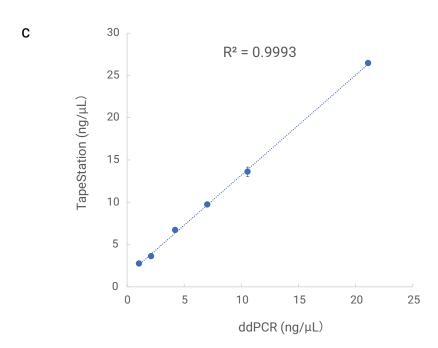


Fig. 5 熱処理により抽出した rAAV DNA の解析

- (A) 各方法で抽出した 1908_rAAV1-CMV-ZsGreen1 の TapeStation での分析結果。レーン1:1 kb DNA Ladder (10 ng/μL)、レーン2: 熱処理、レーン3:フェノール / クロロホルム法で抽出後、AMPure XP ビーズで精製、レーン4: 熱処理で抽出後、AMPure XP ビーズで精製 緑のバンドは内部標準の Lower Marker (25 nt) を示す。
- (B) 1908_rAAV1-CMV-ZsGreen の希釈系列の TapeStation での分析結果。レーン1:1 kb DNA Ladder (10 ng/ μ L)、レーン2~7:1~20 ng/ μ L 1908_rAAV1-CMV-ZsGreen
- (C) TapeStation と ddPCR における定量値の比較

結語

rAAV DNA の分析や品質管理において、サイズや純度、定量は重要な確認事項です。本アプリケーションノートでは、自動電気泳動システムである TapeStation を用い、従来の High Sensitivity RNA Assay の熱変性条件を改変することで、ssDNA である rAAV DNA を効率的かつ正確に、さらに簡便に分析可能であることが示されました。

謝辞

本研究は、国立研究開発法人 日本医療研究開発機構 (AMED) の課題番号 JP18ae0201001 の支援を受けました。

参考文献

- 1. Concise Analysis of Single-Stranded DNA of Recombinant Adeno-Associated Virus By Automated Electrophoresis System Yuzhe Y. et al., Human Gene Therapy, Vol. 35, Issue 3-4, 2024.
- High Sensitivity RNA SreenTape Assay for TapeStation Systems Quick Guide, Agilent Technologies, G2991-90121 Rev. B.
- 3. Gene therapy with adeno-associated virus vector 5-human factor IX in adults with hemophilia B Miesbach W. et al., Blood, Vol.131, Issue 9, 2018.
- 4. Long-term safety and efficacy of factor IX gene therapy in hemophilia B Nathwani AC. et al., N Engl J Med, Vol. 371, Issue 21, 2014
- 5. Biophysical and ultrastructural characterization of adenoassociated virus capsid uncoating and genome release Horowitz ED *et al.*, *J Virol*, Vol. 87, Issue 6, 2013

[お問い合わせ窓口]

アジレント・テクノロジー株式会社

本社 / 〒 192-8510 東京都八王子市高倉町 9-1
●カストマコンタクトセンタ **10** 0120-477-111 mail: email_japan@agilent.com
※仕様は予告なく変更する場合があります。
※掲載の製品はすべて試験研究用です。
診断目的にご利用いただくことはできません。

www.agilent.com/genomics/genomics-jp G240651

© Agilent Technologies, Inc. 2024 本書の一部または全部を書面による事前の許可なしに複製、改変、翻訳することは、著作権法で認められている場合を除き、法律で禁止されています。 Printed in Japan, Jun. 2024 5994-7522JAJP

